
CHAPTER I 
INTRODUCTION 

I 
I n  this chapter, we present general concepts and definitions that are funda- 

mental to many of the topics discussed in this book. The chapter serves also as a brief 
guide and introduction to the remainder of the book. You may find it fruitful to refer to this 
chapter, from time to time, in conjunction with the study of topics in other chapters. 

1 .I 
OF MATERIALS 

REVIEW OF ELEMENTARY MECHANICS 

Engineering structures and machines, such as airplanes, automobiles, bridges, spacecraft, 
buildings, electric generators, gas turbines, and so forth, are usually formed by connecting 
various parts or members. In most structures or machines, the primary function of a mem- 
ber is to support or transfer external forces (loads) that act on it, without failing. Failure of 
a member may occur when it is loaded beyond its capacity to resist fracture, general yield- 
ing, excessive deflection, or instability (see Section 1.4). These types of failure depend on 
the nature of the load and the type of member. 

In elementary mechanics of materials, members subjected to axial loads, bending 
moments, and torsional forces are studied. Simple formulas for the stress and deflection of 
such members are developed (Gere, 2001). Some of these formulas are based on simplify- 
ing assumptions and as such must be subjected to certain restrictions when extended to 
new problems. In this book, many of these formulas are used and extended to applications 
of more complex problems. But first we review, without derivation, some of the basic for- 
mulas from mechanics of materials and highlight the limitations to their application. We 
include a review of bars under axial load, circular rods subjected to torsion, and beams 
loaded in shear and bending. In the equations that follow, dimensions are expressed in 
terms of force [F], length [L], and radians [rad]. 

1.1.1 Axially Loaded Members 

Figure 1.1 represents an axially loaded member. It could consist of a rod, bar, or tube,' or 
it could be a member of more general cross section. For such a member, the following ele- 
mentary formulas apply: 

'A rod or bar is considered to be a straight member with a solid cross section. A tube is a straight, hollow cylinder. 

1 
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FIGURE 1.1 Axially loaded member. 

Axial stress a away from the ends of the member2 

a = [F/L2] 
A 

Elongation e of the member 

Axial strain E in the member 

In the above formulas: 

P [F] is the axial load, 
A [L2] is the cross-sectional area of the member, 
L [L] is the length of the member, and 
E [F/L2] is the modulus of elasticity of the material of the member. 

Restrictions 
i. The member must be prismatic (straight and of constant cross section). 

ii. The material of the member must be homogeneous (constant material properties at 

iii. The load P must be directed axially along the centroidal axis of the member. 
iv. The stress and strain are restricted to the linearly elastic range (see Figure 1.2). 

all points throughout the member). 

Strain E 

FIGURE 1.2 Linear stress-strain relation. 

*At the ends, generally depending on how the load P is applied, a stress concentration may exist. 
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1.1.2 Torsionally Loaded Members 

Figure 1.3 represents a straight torsional member with a circular cross section and radius r. 
Again the member could be a rod, bar, or tube. For such a member, the following elemen- 
tary formulas apply: 

Shear stress z in the member 

T =  2 [F/L2] 
J 

Rotation (angle of twist) y o f  the cross section B relative to cross sectionA 

y = [rad] 
GJ 

Shear strain y at a point in the cross section 

y = p Y = I  
L G  

In the above formulas (see Figure 1.3): 

T [FL] is the torque or twisting moment, 
p [L] is the radial distance from the center 0 of the member to the point of interest, 
J [L4] is the polar moment of inertia of the cross section, 
L [L] is the length of the member between A and B, and 
G [F/L2] is the shear modulus of elasticity (also known as the modulus of rigidity) of 
the material. 

Restrictions 
i. The member must be prismatic and have a circular cross section. 

ii. The material of the member must be homogeneous and linearly elastic. 
iii. The torque T is applied at the ends of the member and no additional torque is applied 

between sections A and B. Also, sections A and B are remote from the member ends. 
iv. The angle of twist at any cross section of the member is small. 

1 .I .3 Bending of Beams 

A beam is a structural member whose length is large compared to its cross-sectional 
dimensions and is loaded by forces and/or moments that produce deflections perpendicu- 
lar to its longitudinal axis. Figure 1.4a represents a beam of rectangular cross section 

FIGURE 1.3 Circular torsion member. 
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FIGURE 1.4 (a) Rectangular cross-section beam. (b) Section of length x. 

subjected to forces and moments. A free-body diagram of a portion of the beam is shown 
in Figure 1.4b. For such a member, the following elementary formulas apply: 

Stress 0 acting normal to the cross section of the member at section x 

The displacement v in the y direction is found from the differential expression 

d 2 v  - M ( x )  

d x 2  Ez 
- - -  

Shear stress z in the cross section at x for y = y 1  (see Figure 1.5) 

(1.7) 

(1.9) 

In the above formulas (see Figures 1.4a, 1.4b, and 1.5): 

M(x) [FL] is the positive bending moment at section x in the member, 
y [L] is the vertical coordinate, positive upward, from the centroid to the point of 
interest, 
I [L4] is the moment of inertia of the cross section, 
E [F/L2] is the modulus of elasticity of the material of the member, 
V(x)  [F] is the shear force at section x in the member, 
Q [L3] is the first moment of the cross-sectional area (shaded in Figure 1.5) above 
the level y = y l  and is given by 

y = a12 a/2 

Q = 5 y d A  = f y b d y  = b ( a 2 - 4 y : )  [."I 
8 

Y =YI YI 

and 
b [L] is the width of the beam cross section at the level y = y l .  

(1.10) 

Restrictions 
i. Equation 1.7 is limited to bending relative to principal axes and to linear elastic 

ii. Equation 1.8 is applicable only to small deflections, since only then is d 2 v / d x 2  a 
material behavior. 

good approximation for the curvature of the beam. 
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FIGURE 1.5 Beam cross section. 

iii. Equations 1.9 and 1.10 are restricted to bending of beams of rectangular cross sec- 
tion relative to principal axes. 

1.2 METHODS OF ANALYSIS 

In this book, we derive relations between load and stress or between load and deflection 
for a system or a component (a member) of a system. Our starting point is a description 
of the loads on the system, the geometry of the system (including boundary conditions), 
and the properties of the material in the system. Generally the load-stress relations 
describe either the distributions of normal and shear stresses on a cross section of the 
member or the stress components that act at a point in the member. For a given member 
subjected to prescribed loads, the load-stress relations are based on the following 
requirements: 

1. The equations of equilibrium (or equations of motion for bodies not in equilibrium) 
2. The compatibility conditions (continuity conditions) that require deformed volume 

3. The constitutive relations 
elements in the member to fit together without overlap or tearing 

Two different methods are used to satisfy requirements 1 and 2: the method of mechanics of 
materials and the method of general continuum mechanics. Often, load-stress and load- 
deflection relations are not derived in this book by general continuum mechanics methods. 
Instead, the method of mechanics of materials is used to obtain either exact solutions or reli- 
able approximate solutions. In the method of mechanics of materials, the load-stress rela- 
tions are derived first. They are then used to obtain load-deflection relations for the member. 

A simple member such as a circular shaft of uniform cross section may be subjected 
to complex loads that produce a multiaxial state of stress. However, such complex loads 
can be reduced to several simple types of load, such as axial, bending, and torsion. Each 
type of load, when acting alone, produces mainly one stress component, which is distrib- 
uted over the cross section of the member. The method of mechanics of materials can be 
used to obtain load-stress relations for each type of load. If the deformations of the mem- 
ber that result from one type of load do not influence the magnitudes of the other types of 
loads and if the material remains linearly elastic for the combined loads, the stress compo- 
nents resulting from each type of load can be added together (i.e., the method of superpo- 
sition may be used). 

In a complex member, each load may have a significant influence on each compo- 
nent of the state of stress. Then, the method of mechanics of materials becomes cumber- 
some, and the use of the method of continuum mechanics may be more appropriate. 
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1.2.1 Method of Mechanics of Materials 

The method of mechanics of materials is based on simplified assumptions related to the 
geometry of deformation (requirement 2 )  so that strain distributions for a cross section of 
the member can be determined. A basic assumption is that plane sections before loading 
remain plane after loading. The assumption can be shown to be exact for axially loaded 
members of uniform cross sections, for slender straight torsion members having uniform 
circular cross sections, and for slender straight beams of uniform cross sections subjected 
to pure bending. The assumption is approximate for other problems. The method of 
mechanics of materials is used in this book to treat several advanced beam topics (Chap- 
ters 7 to 10). In a similar way, we often assume that lines normal to the middle surface of 
an undeformed plate remain straight and normal to the middle surface after the load is 
applied. This assumption is used to simplify the plate problem in Chapter 13. 

We review the steps used in the derivation of the flexure formula (Eq. 1.7 of Section 
1.1) to illustrate the method of mechanics of materials and to show how the three require- 
ments listed previously are used. Consider a symmetrically loaded straight beam of uni- 
form cross section subjected to a moment M that produces pure bending (Figure 1.6~). 
(Note that the plane of loads lies in a plane of symmetry of every cross section of the 
beam.) We wish to determine the normal stress distribution o for a specified cross section 
of the beam. We assume that o i s  the major stress component and ignore other effects. Pass 
a section through the beam at the specified cross section so that the beam is cut into two 
parts. Consider a free-body diagram of one part (Figure 1.6b). The applied moment M for 
this part of the beam is in equilibrium with internal forces represented by the sum of the 
forces that result from the normal stress 0 that acts over the area of the cut section. Equa- 
tions of equilibrium (requirement l )  relate the applied moment to internal forces. Since no 
axial force acts, two integrals are obtained: o y d A  = M ,  where M is the 
applied external moment and y is the perpendicular distance from the neutral axis to the 
element of area dA. 

Before the two integrals can be evaluated, we must know the distribution of o over 
the cross section. Since the stress distribution is not known, it is determined indirectly 
through a strain distribution obtained by requirement 2. The continuity condition is exam- 
ined by consideration of two cross sections of the undeformed beam separated by an infin- 
itesimal angle do (Figure 1.6~). Under the assumption that plane sections remain plane, 
the cross sections must rotate with respect to each other as the moment M is applied. There 
is a straight line in each cross section called the neutral axis along which the strains remain 
zero. Since plane sections remain plane, the strain distribution must vary linearly with the 
distance y as measured from this neutral axis. 

o dA = 0 and 

FIGURE 1.6 Pure bending of a long straight beam. (a) Circular curvature of beam in pure bend- 
ing. (b) Free-body diagram of cut beam. (c )  Infinitesimal segment of beam. 
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Requirement 3 is now employed to obtain the relation between the assumed strain 
distribution and the stress distribution. Tension and compression stress-strain diagrams 
represent the response for the material in the beam. For sufficiently small strains, these 
diagrams indicate that the stresses and strains are linearly related. Their constant ratio, 
CJ/E = E,  is the modulus of elasticity for the material. In the linear range the modulus of 
elasticity is the same in tension or compression for many engineering materials. Since 
other stress components are neglected, o i s  the only stress component in the beam. Hence, 
the stress-strain relation for the beam is o = EE. Therefore, both the stress CT and strain E 

vary linearly with the distance y as measured from the neutral axis of the beam (Figure 
1.6). The equations of equilibrium can be integrated to obtain the flexure formula CT = My/Z,  
where M is the applied moment at the given cross section of the beam and I is the moment 
of inertia of the beam cross section. 

1.2.2 Method of Continuum Mechanics 
and the Theory of Elasticity 

Many of the problems treated in this book have multiaxial states of stress of such com- 
plexity that the mechanics of materials method cannot be employed to derive load-stress 
and load-deflection relations. Therefore, in such cases, the method of continuum mechan- 
ics is used. When we consider small displacements and linear elastic material behavior 
only, the general method of continuum mechanics reduces to the method of the theory of 
linear elasticity. 

In the derivation of load-stress and load-deflection relations by the theory of linear 
elasticity, an infinitesimal volume element at a point in a body with faces normal to the 
coordinate axes is often employed. Requirement 1 is represented by the differential equa- 
tions of equilibrium (Chapter 2). Requirement 2 is represented by the differential equa- 
tions of compatibility (Chapter 2). The material response (requirement 3) for linearly 
elastic behavior is determined by one or more experimental tests that define the required 
elastic coefficients for the material. In this book we consider mainly isotropic materials for 
which only two elastic coefficients are needed. These coefficients can be obtained from a 
tension specimen if both axial and lateral strains are measured for every load applied to the 
specimen. Requirement 3 is represented therefore by the isotropic stress-strain relations 
developed in Chapter 3. If the differential equations of equilibrium and the differential 
equations of compatibility can be solved subject to specified stress-strain relations and 
specified boundary conditions, the states of stress and displacements for every point in the 
member are obtained. 

1.2.3 Deflections by Energy Methods 

Certain structures are made up of members whose cross sections remain essentially plane 
during the deflection of the structures. The deflected position of a cross section of a mem- 
ber of the structure is defined by three orthogonal displacement components of the cen- 
troid of the cross section and by three orthogonal rotation components of the cross section. 
These six components of displacement and rotation of a cross section of a member are 
readily calculated by energy methods. For small displacements and small rotations and for 
linearly elastic material behavior, Castigliano’s theorem is effective as a method for the 
computation of the displacements and rotations. The method is employed in Chapter 5 for 
structures made up of axially loaded members, beams, and torsion members, and in Chap- 
ter 9 for curved beams. 
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1.3 STRESS-STRAIN RELATIONS 

To derive load-stress and load-deflection relations for specified structural members, the 
stress components must be related to the strain components. Consequently, in Chapter 3 
we discuss linear stress-strain-temperature relations. These relations may be employed in 
the study of linearly elastic material behavior. In addition, they are employed in plasticity 
theories to describe the linearly elastic part of the total response of materials. 

Because experimental studies are required to determine material properties (e.g., 
elastic coefficients for linearly elastic materials), the study of stress-strain relations is, in 
part, empirical. To obtain needed isotropic elastic material properties, we employ a tension 
specimen (Figure 1.7). If lateral as well as longitudinal strains are measured for linearly 
elastic behavior of the tension specimen, the resulting stress-strain data represent the 
material response for obtaining the needed elastic constants for the material. The funda- 
mental elements of the stress-strain-temperature relations, however, are studied theoreti- 
cally by means of the first law of thermodynamics (Chapter 3). 

The stress-strain-temperature relations presented in Chapter 3 are limited mainly to 
small strains and small rotations. The reader interested in large strains and large rotations 
may refer to Boresi and Chong (2000). 

1.3.1 Elastic and Inelastic Response of a Solid 

Initially, we review the results of a simple tension test of a circular cylindrical bar that is 
subjected to an axially directed tensile load P (Figure 1.7). It is assumed that the load is 
monotonically increased slowly (so-called static loading) from its initial value of zero load 
to its final value, since the material response depends not only on the magnitude of the 
load but also on other factors, such as the rate of loading, load cycling, etc. 

It is customary in engineering practice to plot the tensile stress o in  the bar as a func- 
tion of the strain E of the bar. In engineering practice, it is also customary to assume that 
the stress CJ is uniformly distributed over the cross-sectional area of the bar and that it is equal 
in magnitude to PIA,, where A,  is the original cross-sectional area of the bar. Similarly, the 
strain E is assumed to be constant over the gage length L and equal to ALIL = e/L, 
where AL = e (Figure 1.7b) is the change or elongation in the original gage length L (the 

FIGURE 1.7 Circular cross section tension specimen. (a) Undeformed specimen: Gage length 
L; diameter D. (b) Deformed specimen: Gage length elongation e. 
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distance JK in Figure 1.7~) .  For these assumptions to be valid, the points J and K must be 
sufficiently far from the ends of the bar (a distance of one or more diameters D from the 
ends). 

According to the definition of stress (Section 2.1), the true stress is 6, = P/A,, where 
A, is the true cross-sectional area of the bar when the load P acts. (The bar undergoes lat- 
eral contraction everywhere as it is loaded, with a corresponding change in cross-sectional 
area.) The difference between 6 = P/Ao and 6, = P/A, is small, provided that the elonga- 
tion e and, hence, the strain E are sufficiently small (Section 2.8). If the elongation is large, 
A, may differ significantly fromAo. In addition, the instantaneous or true gage length when 
load P acts is L ,  = L + e (Figure 1.7b). Hence, the true gage length L ,  also changes with 
the load P. Corresponding to the true stress o,, we may define the true strain et as follows: 
In the tension test, assume that the load P is increased from zero (where e = 0) by succes- 
sive infinitesimal increments dP. With each incremental increase dP in load P, there is a 
corresponding infinitesimal increase d L ,  in the instantaneous gage length L, .  Hence, the 
infinitesimal increment d q  of the true strain E ,  resulting from dP is 

dLt 
Lt 

dE, = - 

Integration of Eq. 1.1 1 from L to L ,  yields the true strain E, .  Thus, we have 

L + e  L* 
E ,  = jdEt = I n k )  = = ln(1 + E )  

L 

(1.11) 

(1.12) 

In contrast to the engineering strain E, the true strain E ,  is not linearly related to the elonga- 
tion e of the original gage length L . (Compare Eqs. 1.3 and 1.12.) 

For many structural metals (e.g., alloy steels), the stress-strain relation of a tension 
specimen takes the form shown in Figure 1.8. This figure is the tensile stress-strain dia- 
gram for the material. The graphical stress-strain relation (the curve OABCF in Figure 
1.8) was obtained by drawing a smooth curve through the tension test data for a certain 
alloy steel. Engineers use stress-strain diagrams to define certain properties of the material 
that are judged to be significant in the safe design of a statically loaded member. Some of 
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FIGURE 1.8 Engineering stress-strain diagram for tension specimen of alloy steel. 
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these special properties are discussed briefly in the following section. In addition, certain 
general material responses are addressed. 

1.3.2 Material Properties 

A tensile stress-strain diagram is used by engineers to determine specific material proper- 
ties used in design. There are also general characteristic behaviors that are somewhat com- 
mon to all materials. To describe these properties and characteristics, it is convenient to 
expand the strain scale of Figure 1.8 in the region O M  (Figure 1.9). Recall that Figures 1.8 
and 1.9 are based on the following definitions of stress and strain: CT = P/A, and E = e/L, 
where A, and L are constants. 

Consider a tensile specimen (bar) subjected to a strain E under the action of a load P. 
If the strain in the bar returns to zero as the load P goes to zero, the material in the bar is 
said to have been strained within the elastic limit or the material has remained perfectly 
elustic. If under loading the strain is linearly proportional to the load P (part OA in Figures 
1.8 and 1.9), the material is said to be strained within the limit of linear elasticity. The 
maximum stress for which the material remains perfectly elastic is frequently referred to 
simply as the elastic limit GEL, whereas the stress at the limit of linear elasticity is referred 
to as the proportional limit opL (point A in Figures 1.8 and 1.9). 

Ordinarily, o E L  is larger than oPL. The properties of elastic limit and proportional 
limit, although important from a theoretical viewpoint, are not of practical significance for 
materials like alloy steels. This is because the transitions from elastic to inelastic behavior 
and from linear to nonlinear behavior are so gradual that these limits are very difficult to 
determine from the stress-strain diagram (part OAB of the curves in Figures 1.8 and 1.9). 

When the load produces a stress CT that exceeds the elastic limit (e.g., the stress at 
point J in Figure 1.9), the strain does not disappear upon unloading (curve JK in Figure 
1.9). A permanent strain ep remains. For simplicity, it is assumed that the unloading 
occurs along the straight line JK, with a slope equal to that of the straight line OA. The 

Strain c 

FIGURE 1.9 Engineering stress-strain diagram for tension specimen of alloy steel (expanded 
strain scale). 



1.3 STRESSSTRAIN RELATIONS 1 1 

strain that is recovered when the load is removed is called the elastic strain E,. Hence, the 
total strain E at point J is the sum of the permanent strain and elastic strain, or E = ep + E,. 

Yield Strength 
The value of stress associated with point L (Figure 1.9) is called the yield strength and is 
denoted by bYs or simply by Y. The yield strength is determined as the stress associated 
with the intersection of the curve OAB and the straight line LM drawn from the offset strain 
value, with a slope equal to that of line OA (Figure 1.9). The value of the offset strain is 
arbitrary. However, a commonly agreed upon value of offset is 0.002 or 0.2% strain, as 
shown in Figure 1.9. Typical values of yield strength for several structural materials are 
listed in Appendix A, for an offset of 0.2%. For materials with stress-strain curves like that 
of alloy steels (Figures 1.8 and 1.9), the yield strength is used to predict the load that ini- 
tiates inelastic behavior (yield) in a member. 

Ultimate Tensile Strength 
Another important property determined from the stress-strain diagram is the ultimate ten- 
sile strength or ultimate tensile stress 0,. It is defined as the maximum stress attained in 
the engineering stress-strain diagram, and in Figure 1.8 it is the stress associated with point 
C. As seen from Figure 1.8, the stress increases continuously beyond the elastic region OA, 
until point C is reached. As the material is loaded beyond its yield stress, it maintains an 
ability to resist additional strain with an increase in stress. This response is called strain 
hardening. At the same time the material loses cross-sectional area owing to its elongation. 
This area reduction has a softening (strength loss) effect, measured in terms of initial area Ao. 
Before point C is reached, the strain-hardening effect is greater than the loss resulting from 
area reduction. At point C, the strain-hardening effect is balanced by the effect of the area 
reduction. From point C to point F, the weakening effect of the area reduction dominates, 
and the engineering stress decreases, until the specimen ruptures at point E 

Modulus of Elasticity 
In the straight-line region OA of the stress-strain diagram, the stress is proportional to 
strain; that is, 0 = EE. The constant of proportionality E is called the modulus of elasticity. 
It is also referred to as Young’s modulus. Geometrically, it is equal in magnitude to the 
slope of the stress-strain relation in the region OA (Figure 1.9). 

Percent Elongation 
The value of the elongation eF of the gage length L at rupture (point F, Figure 1.8) divided 
by the gage length L (in other words, the value of strain at rupture) multiplied by 100 is 
referred to as the percent elongation of the tensile specimen. The percent elongation is a 
measure of the ductility of the material. From Figure 1.8, we see that the percent elonga- 
tion of the alloy steel is approximately 23%. 

An important metal for structural applications, mild or structural steel, has a distinct 
stress-strain curve as shown in Figure 1.1Oa. The portion O A B  of the stress-strain diagram 
is shown expanded in Figure 1.10b. The stress-strain diagram for structural steel usually 
exhibits a so-called upper yield point, with stress bYu, and a lower yield point, with stress 
oyL This is because the stress required to initiate yield in structural steel is larger than the 
stress required to continue the yielding process. At the lower yield the stress remains 
essentially constant for increasing strain until strain hardening causes the curve to rise 
(Figure 1.10a). The constant or flat portion of the stress-strain diagram may extend over a 
strain range of 10 to 40 times the strain at the yield point. Actual test data indicate that the 
curve from A to B bounces up and down. However, for simplicity, the data are represented 
by a horizontal straight line. 
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FIGURE 1.10 Engineering stress-strain diagram for tension specimen of structural steel. 
(a) Stress-strain diagram. (b) Diagram for small strain ( E <  0.007). (c) Idealized diagram for small 
strain ( E  < 0.007). 

Yield Point for Structural Steel 
The upper yield point is usually ignored in design, and it is assumed that the stress initiat- 
ing yield is the lower yield point stress, on. Consequently, for simplicity, the stress- 
strain diagram for the region OAB is idealized as shown in Figure 1.10~.  Also for simpiic- 
ity, we shall refer to the yield point stress as the yield point and denote it by the symbol I: 
Recall that the yield strength (or yield stress) for alloy steel, and for materials such as alu- 
minum alloys that have similar stress-strain diagrams, was also denoted by Y (Figure 1.9). 

Modulus of Resilience 
The modulus of resilience is a measure of energy per unit volume (energy density) 
absorbed by a material up to the time it yields under load and is represented by the area 
under the stress-strain diagram to the yield point (the shaded area OAH in Figure 1.10~).  
In Figure l.lOc, this area is given by D ~ L E ~ L .  Since eyL = o y L I E ,  and with the notation 
Y = o y L ,  we may express the modulus of resilience as follows: 

.-I 

(1.13) 1 Y" modulus of resilience = - - 
2 E  
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Modulus of resilience is an important property for differentiating among materials for 
applications in which energy absorption is critical. 

Modulus of Toughness 
The modulus of toughness U, is a measure of the ability of a material to absorb energy 
prior to fracture. It represents the strain energy per unit volume (strain-energy density) in 
the material at fracture. The strain-energy density is equal to the area under the stress- 
strain diagram to fracture (point F on curves OABCF in Figures 1.8 and 1.10~).  The larger 
the modulus of toughness is, the greater is the ability of a material to absorb energy with- 
out fracturing. A large modulus of toughness is important if a material is not to fail under 
impact or seismic loads. 

Modulus of Rupture 
The modulus of rupture is the maximum tensile or compressive stress in the extreme fiber 
of a beam loaded to failure in bending. Hence, modulus of rupture is measured in a bend- 
ing test, rather than in a tension test. It is analogous to the ultimate strength of a material, 
but it does not truly represent the maximum bending stress for a material because it is 
determined with the bending formula o = My/Z, which is valid only in the linearly elastic 
range for a material. Consequently, modulus of rupture normally overpredicts the actual 
maximum bending stress at failure in bending. Modulus of rupture is used for materials 
that do not exhibit large plastic deformation, such as wood or concrete. 

Poisson’s Ratio 
Poisson’s ratio is a dimensionless measure of the lateral strain that occurs in a member 
owing to strain in its loaded direction. It is found by measuring both the axial strain E ,  and 
the lateral strain in a uniaxial tension test and is given by the value 

(1.14) 

In the elastic range, Poisson’s ratio lies between 0.25 and 0.33 for most engineering mate- 
rials. 

Necking of a Mild Steel Tension Specimen 
As noted previously, the stress-strain curve for a mild steel tension specimen first reaches 
a local maximum called the upper yield or plastic limit byu, after which it drops to a local 
minimum (the lower yield point Y )  and runs approximately (in a wavy fashion) parallel to 
the strain axis for some range of strain. For mild steel, the lower yield point stress Y is 
assumed to be the stress at which yield is initiated. After some additional strain, the stress 
rises gradually; a relatively small change in load causes a significant change in strain. In 
this region (BC in Figure 1.10a), substantial differences exist in the stress-strain diagrams, 
depending on whether area A, or A, is used in the definition of stress. With area A,, the 
curve first rises rapidly and then slowly, turning with its concave side down and attaining a 
maximum value o,, the ultimate strength, before turning down rapidly to fracture (point F, 
Figure 1.10~).  Physically, after O, is reached, necking of the bar occurs (Figure 1.1 1). This 
necking is a drastic reduction of the cross-sectional area of the bar in the region where the 
fracture ultimately occurs. 

If the load P is referred to the true cross-sectional area A, and, hence, O, = P/A,, the 
true stress-strain curve differs considerably from the engineering stress-strain curve in the 
region BC (Figures 1 . 1 0 ~  and 1.12). In addition, the engineering stress-strain curves for 
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FIGURE 1.11 Necking of tension specimen. 

tension and compression differ considerably in the plastic region (Figure 1.12), because of 
the fact that in tension the cross-sectional area decreases with increasing load, whereas in 
compression it increases with increasing load. However, as can be seen from Figure 1.12, 
little differences exist between the curves for small strains 

Equation 1.12 remains valid until necking of the tension specimen occurs. Once 
necking beings, the engineering strain E is no longer constant in the gage length (see Fig- 
ures 1.7 and 1.11). However, a good approximation of the true strain may be obtained 
from the fact that the volume of the specimen remains nearly constant as necking occurs. 

< 0.01). 

Y 

0 0.02 0.04 0.06 0.08 0.10 0.12 
True strain E~ 

FIGURE 1 . I2 Comparison of tension and compression engineering stress-strain diagrams 
with the true stress-strain diagram for structural steel. 



1.3 STRESS-STRAIN RELATIONS I 5 

Thus, if the volume of the specimen in the gage length remains constant, before necking 
we have 

A,L = A , ( L + e )  (a) 
or, afier dividing by A tL, we obtain for a bar of circular cross section and initial diameter Do 

where D, is the true diameter of the bar. 
Substitution of Eq. (b) into Eq. 1.12 yields 

n 

A0 D; DO 

At Dt" Dt 
et = In- = In- = 2ln- (1.15) 

By measurement of the true diameter at the minimum cross section of the bar in the 
necked region (Figure 1 .1  l), we obtain a good approximation of the true strain in the 
necked region up to fracture. 

Other Materials 
There are many materials whose tensile specimens do not undergo substantial plastic 
strain before fracture. These materials are called brittle materials. A stress-strain diagram 
typical of brittle materials is shown in Figure 1.13. It exhibits little plastic range, and frac- 
ture occurs almost immediately at the end of the elastic range. In contrast, there are mate- 
rials that undergo extensive plastic deformation and little elastic deformation. Lead and 
clay are such materials. The idealized stress-strain diagram for clay is typical of such 
materials (Figure 1.14). This response is referred to as rigid-perfectly plastic. 

- m a 
E 
b 

2 z 
!n 

O 

F 

Strain E 

FIGURE 1.13 Stress-strain diagram for a brittle material. 

0 E 

FIGURE 1.14 Stress-strain diagram for clay. 
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EXAMPLE 1.1 
Material 

Properties for 
Alloy and 

Structural Steel 

Solution 

EXAMPLE 1.2 
Tension Rod: 

Modulus oi 
Elasticity, 

Permanent 
Strain, and 

Elastic Strain 

Solution 

(a) By Figures 1.8 and 1.9, estimate the yield strength Y and the ultimate strength 0, of a tension rod 
of alloy steel. 

(b) By Figures 1.8 and 1.10u, estimate the modulus of toughness U, for alloy steel and structural 
steel. 

(a) By measurement of Figure 1.8, 
1 
6 

0,-700+-(100) = 717 MPa 

By measurement of Figure 1.9, 

Y = 450 MPa 

(b) By Figure 1.8, we estimate the number of squares (a square consists of 100-MPa stress by 0.025 
strain) under the curve OABCF to be approximately 62. Hence, 

U ,  = 62( 100)0.025 = 155 x lo6 N m/m 

Similarly, by Figure l.lOu, we estimate the number of squares (here a square consists of 100-MPa 
stress by 0.04 strain) under the curve OABCF to be 27. Hence, 

U ,  = 27(100)0.04 = 108 x lo6 N m/m 

A rod of alloy steel (Figure 1.9) is subjected to an axial tension load that produces a stress of (T= 500 
MPa and an associated strain of eSOO = 0.0073. Assume that elastic unloading occurs. 

(a) Determine the modulus of elasticity of the rod. 

(b) Determine the permanent strain in the rod and the strain that is recovered as the rod is unloaded. 

3 

3 

(a) By inspection of Figure 1.9, the stress and strain at pointA are 0, = 343 MPa and E, = 0.00172. 
Hence, the modulus of elasticity is 

E = - = - -  OA 343 - 199GPa 
0.00172 

(b) By Figure 1.9 and Eq. (a), the elastic strain (recovered strain) is 

The strain at (T = 500 MPa is (from Figure 1.9) 

cSw = 0.0073 

Hence, the permanent strain is 

E~ = E ~ W - E ,  = 0.0073-0.0025 = 0.0048 

1.4 FAILURE AND LIMITS ON DESIGN 

To design a structural system to perform a given function, the designer must have a clear 
understanding of the possible ways or modes by which the system may fail to perform its 
function. The designer must determine the possible modes of failure of the system and 
then establish suitable failure criteria that accurately predict the failure modes. 
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In general, the determination of modes of failure requires extensive knowledge of 
the response of a structural system to loads. In particular, it requires a comprehensive 
stress analysis of the system. Since the response of a structural system depends strongly on 
the material used, so does the mode of failure. In turn, the mode of failure of a given mate- 
rial also depends on the manner or history of loading, such as the number of cycles of load 
applied at a particular temperature. Accordingly, suitable failure criteria must account for 
different materials, different loading histories, and factors that influence the stress distribu- 
tion in the member. 

A major part of this book is concerned with 1. stress analysis, 2. material behavior 
under load, and 3. the relationship between the mode of failure and a critical parameter 
associated with failure. The critical parameter that signals the onset of failure might be 
stress, strain, displacement, load, and number of load cycles or a combination of these. 
The discussion in this book is restricted to situations in which failure of a system is related 
to only a single critical parameter. In addition, we will examine the accuracy of the theo- 
ries presented in the text with regard to their ability to predict system behavior. In particu- 
lar, limits on design will be introduced utilizing factors of safety or reliability-based 
concepts that provide a measure of safety against failure. 

Historically, limits on the design of a system have been established using a factor of 
safety. A factor of safety SF can be defined as 

Rn 
R w  

SF = - (1.16) 

where R, is the nominal resistance (the critical parameter associated with failure) and R ,  
is the safe working magnitude of that same parameter. The letter R is used to represent the 
resistance of the system to failure. Generally, the magnitude of R, is based on theory or 
experimental observation. The factor of safety is chosen on the basis of experiments or 
experience with similar systems made of the same material under similar loading condi- 
tions. Then the safe working parameter R ,  is determined from Eq. 1.16. The factor of 
safety must account for unknowns, including variability of the loads, differences in mate- 
rial properties, deviations from the intended geometry, and our ability to predict the criti- 
cal parameter. 

In industrial applications, the magnitude of the factor of safety SF may range from 
just above 1.0 to 3.0 or more. For example, in aircraft and space vehicle design, where it is 
critical to reduce the weight of the vehicle as much as possible, the SF may be nearly 1.0. 
In the nuclear reactor industry, where safety is of prime importance in the face of many 
unpredictable effects, SF may be as high as 5. 

Generally, a design inequality is employed to relate load effects to resistance. The 
design inequality is defined as 

N R  
CQi I l l  

SF 
I 

(1.17) 

where each Qi represents the effect of a particular working (or service-level) load, such 
as internal pressure or temperature change, and N denotes the number of load types 
considered. 

Design philosophies based on reliability concepts (Harr, 1987; Cruse, 1997) have 
been developed. It has been recognized that a single factor of safety is inadequate to 
account for all the unknowns mentioned above. Furthermore, each of the particular load 
types will exhibit its own statistical variability. Consequently, appropriate load and 
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EXAMPLE 1.3 
Design of 8 

Tension Roa 

Solution 

resistance factors are applied to both sides of the design inequality. So modified, the 
design inequality of Eq. 1.17 may be reformulated as 

N 
C Y j Q i  ‘ CpRn (1.18)  

where the % are the load factors for load effects Qi and Cp is the resistance factor for the 
nominal capacity Rn. The statistical variation of the individual loads is accounted for in x, 
whereas the variability in resistance (associated with material properties, geometry, and 
analysis procedures) is represented by Cp. The use of this approach, known as limit-states 
design, is more rational than the factor-of-safety approach and produces a more uniform 
reliability throughout the system. 

A limit state is a condition in which a system, or component, ceases to fulfill its 
intended function. This definition is essentially the same as the definition of failure used 
earlier in this text. However, some prefer the term limit state because the term failure tends 
to imply only some catastrophic event (brittle fracture), rather than an inability to function 
properly (excessive elastic deflections or brittle fracture). Nevertheless, the term failure 
will continue to be used in this book in the more general context. 

i 

A steel rod is used as a tension brace in a structure. The structure is subjected to dead load (the load 
from the structure itself), live load (the load from the structure’s contents), and wind load. The effect 
of each of the individual loads on the tension brace is 0 = 25 kN, L = 60 kN, and W = 30 kN. Select a 
circular rod of appropriate size to carry these loads safely. Use steel with a yield strength of 250 MPa. 
Make the selection using (a) factor-of-safety design and (b) limit-states design. 

For simplicity in this example, the only limit state that will be considered is yielding of the cross sec- 
tion. Other limit states, including fracture and excessive elongation, are ignored. 

(a) In factor-of-safety design (also known as allowable stress or working stress design), the load 
effects are added without load factors. Thus, the total service-level load is 

(a) CQi = D + L + W  = 115kN = 115,000N 

R ,  = Y A ,  = (250)A, 

The nominal resistance (capacity) of the tension rod is 

(b) 

where A, is the gross area of the rod. In the design of tension members for steel structures, a factor of 
safety of 513 is used (AISC, 1989). Hence, the design inequality is 

250A, 115,000 5 - 
5 - 
3 

which yields A, 2 767 mm’. A rod of 32 mm in diameter, with a cross-sectional area of 804 mm’, is 
adequate. 

(b) In limit-states design, the critical load effect is determined by examination of several possible 
load combination equations. These equations represent the condition in which a single load quantity 
is at its maximum lifetime value, whereas the other quantities are taken at an arbitrary point in time. 
The relevant load combinations for this situation are specified (ASCE, 2000) as 

1.40 ( 4  

1.20 + 1.6L (el 

(0 1.20 + 0.5L + 1.6W 

For the given load quantities, combination (e) is critical. The total load effect is 
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Eriei = 126 IrN = 126,000 N 

In the design of tension members for steel structures, a resistance factor of #I = 0.9 is used (AISC, 
2001). Hence, the limit-states design inequality is 

126,000 I 0.9(250Ag) (h) 

which yields A, t 560 mm2. A rod 28 mm in diameter, with a cross-sectional area of 616 mm2, is 
adequate. 

Discussion 
The objective of this example has been to demonstrate the use of different design philosophies through 
their respective design inequalities, Eqs. 1.17 and 1.18. For the conditions posed, the limit-states 
approach produces a more economical design than the factor-of-safety approach. This can be attributed 
to the recognition in the load factor equations (d-f) that it is highly unlikely both live load and wind 
load would reach their maximum lifetime values at the same time. Different combinations of dead load, 
live load, and wind load, which still give a total service-level load of 115 IcN, could produce different 
factored loads and thus different area requirements for the rod under limit-states design. 

1.4.1 Modes of Failure 
When a structural member is subjected to loads, its response depends not only on the type 
of material from which it is made but also on the environmental conditions and the manner 
of loading. Depending on how the member is loaded, it may fail by excessive dejection, 
which results in the member being unable to perform its design function; it may fail by 
plastic deformation (general yielding), which may cause a permanent, undesirable change 
in shape; it may fail because of afracture (break), which depending on the material and 
the nature of loading may be of a ductile type preceded by appreciable plastic deformation 
or of a brittle type with little or no prior plastic deformation. Fatigue failure, which is the 
progressive growth of one or more cracks in a member subjected to repeated loads, often 
culminates in a brittle fracture type of failure. 

Another manner in which a structural member may fail is by elastic or plastic insta- 
bility. In this failure mode, the structural member may undergo large displacements from 
its design configuration when the applied load reaches a critical value, the buckling load 
(or instability load). This type of failure may result in excessive displacement or loss of 
ability (because of yielding or fracture) to carry the design load. In addition to the failure 
modes already mentioned, a structural member may fail because of environmental corro- 
sion (chemical action). 

To elaborate on the modes of failure of structural members, we discuss more fully 
the following categories of failure modes: 

1. Failure by excessive deflection 

a. Elastic deflection 
b. Deflection caused by creep 

2. Failure by general yielding 
3. Failure by fracture 

a. Sudden fracture of brittle materials 
b. Fracture of cracked or flawed members 
c. Progressive fracture (fatigue) 

4. Failure by instability 
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These failure modes and their associated failure criteria are most meaningful for simple 
structural members (e.g., tension members, columns, beams, circular cross section torsion 
members). For more complicated two- and three-dimensional problems, the significance 
of such simple failure modes is open to question. 

Many of these modes of failure for simple structural members are well known to engi- 
neers. However, under unusual conditions of load or environment, other types of failure may 
occur. For example, in nuclear reactor systems, cracks in pipe loops have been attributed to 
stress-assisted corrosion cracking, with possible side effects attributable to residual welding 
stresses (Clarke and Gordon, 1973; Hakala et al., 1990; Scott and Tice, 1990). 

The physical action in a structural member leading to failure is usually a compli- 
cated phenomenon, and in the following discussion the phenomena are necessarily over- 
simplified, but they nevertheless retain the essential features of the failures. 

1. Failure b y  Excessive Elastic Deflection 
The maximum load that may be applied to a member without causing it to cease to func- 
tion properly may be limited by the permissible elastic strain or deflection of the member. 
Elastic deflection that may cause damage to a member can occur under these different 
conditions: 

a. Deflection under conditions of stable equilibrium, such as the stretch of a tension 
member, the angle of twist of a shaft, and the deflection of an end-loaded cantilever 
beam. Elastic deflections, under conditions of equilibrium, are computed in Chapter 5. 

b. Buckling, or the rather sudden deflection associated with unstable equilibrium and 
often resulting in total collapse of the member. This occurs, for example, when an 
axial load, applied gradually to a slender column, exceeds the Euler load. See Chap- 
ter 12. 

c. Elastic deflections that are the amplitudes of the vibration of a member sometimes 
associated with failure of the member resulting from objectionable noise, shaking 
forces, collision of moving parts with stationary parts, etc., which result from the 
vibrations. 

When a member fails by elastic deformation, the significant equations for design are 
those that relate loads and elastic deflection. For example, the elementary mechanics of 
materials equations, for the three members mentioned under condition (a), are e = PL/AE, 
8 = TLIGJ, and v = PL3/3EI. It is noted that these equations contain the significant prop- 
erty of the material involved in the elastic deflection, namely, the modulus of elasticity E 
(sometimes called the stiffness) or the shear modulus G = E/[2(1 + v)], where v is Pois- 
son’s ratio. 

The stresses caused by the loads are not the significant quantities; that is, the stresses 
do not limit the loads that can be applied to the member. In other words, if a member of 
given dimensions fails to perform its load-resisting function because of excessive elastic 
deflection, its load-carrying capacity is not increased by making the member of stronger 
material. As a rule, the most effective method of decreasing the deflection of a member is 
by changing the shape or increasing the dimensions of its cross section, rather than by 
making the member of a stiffer material. 

2. Failure b y  General Yielding 
Another condition that may cause a member to fail is general yielding. General yielding is 
inelastic deformation of a considerable portion of the member, distinguishing it from 
localized yielding of a relatively small portion of the member. The following discussion of 
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yielding addresses the behavior of metals at ordinary temperatures, that is, at temperatures 
that do not exceed the recrystallization temperature. Yielding at elevated temperatures 
(creep) is discussed in Chapter 18. 

Polycrystalline metals are composed of extremely large numbers of very small units 
called crystals or grains. The crystals have slip planes on which the resistance to shear 
stress is relatively small. Under elastic loading, before slip occurs, the crystal itself is dis- 
torted owing to stretching or compressing of the atomic bonds from their equilibrium 
state. If the load is removed, the crystal returns to its undistorted shape and no permanent 
deformation exists. When a load is applied that causes the yield strength to be reached, the 
crystals are again distorted but, in addition, defects in the crystal, known as dislocations 
(Eisenstadt, 1971), move in the slip planes by breaking and reforming atomic bonds. After 
removal of the load, only the distortion of the crystal (resulting from bond stretching) is 
recovered. The movement of the dislocations remains as permanent deformation. 

After sufficient yielding has occurred in some crystals at a given load, these crystals 
will not yield further without an increase in load. This is due to the formation of disloca- 
tion entanglements that make motion of the dislocations more and more difficult. A higher 
and higher stress will be needed to push new dislocations through these entanglements. 
This increased resistance that develops after yielding is known as strain hardening or work 
hardening. Strain hardening is permanent. Hence, for strain-hardening metals, the plastic 
deformation and increase in yield strength are both retained after the load is removed. 

When failure occurs by general yielding, stress concentrations usually are not signif- 
icant because of the interaction and adjustments that take place between crystals in the 
regions of the stress concentrations. Slip in a few highly stressed crystals does not limit the 
general load-carrying capacity of the member but merely causes readjustment of stresses 
that permit the more lightly stressed crystals to take higher stresses. The stress distribution 
approaches that which occurs in a member free from stress concentrations. Thus, the 
member as a whole acts substantially as an ideal homogeneous member, free from abrupt 
changes of section. 

It is important to observe that, if a member that fails by yielding is replaced by one 
with a material of a higher yield stress, the mode of failure may change to that of elastic 
deflection, buckling, or excessive mechanical vibrations. Hence, the entire basis of design 
may be changed when conditions are altered to prevent a given mode of failure. 

3. Failure by  Fracture 
Some members cease to function satisfactorily because they break (fracture) before either 
excessive elastic deflection or general yielding occurs. Three rather different modes or 
mechanisms of fracture that occur especially in metals are now discussed briefly. 

a. Sudden Fracture of Brittle Material. Some materials-so-called brittle materi- 
als-function satisfactorily in resisting loads under static conditions until the material 
breaks rather suddenly with little or no evidence of plastic deformation. Ordinarily, the 
tensile stress in members made of such materials is considered to be the significant 
quantity associated with the failure, and the ultimate strength 0, is taken as the mea- 
sure of the maximum utilizable strength of the material (Figure l .  13). 

b. Fracture of Flawed Members. A member made of a ductile metal and subjected 
to static tensile loads will not fracture in a brittle manner as long as the member is 
free of flaws (cracks, notches, or other stress concentrations) and the temperature is 
not unusually low. However, in the presence of flaws, ductile materials may experi- 
ence brittle fracture at normal temperatures. Plastic deformation may be small or 
nonexistent even though fracture is impending. Thus, yield strength is not the critical 
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C. 

material parameter when failure occurs by brittle fracture. Instead, notch toughness, 
the ability of a material to absorb energy in the presence of a notch (or sharp crack), 
is the parameter that governs the failure mode. Dynamic loading and low tempera- 
tures also increase the tendency of a material to fracture in a brittle manner. Failure 
by brittle fracture is discussed in Chapter 15. 
Progressive Fracture (Fatigue). If a metal that ordinarily fails by general yield- 
ing under a static load is subjected to repeated cycles of stress, it may fail by fracture 
without visual evidence of yielding, provided that the repeated stress is greater than 
a value called the fatigue strength. Under such conditions, minute cracks start at one 
or more points in the member, usually at points of high localized stress such as at 
abrupt changes in section, and gradually spread by fracture of the material at the 
edges of the cracks where the stress is highly concentrated. The progressive fracture 
continues until the member finally breaks. This mode of failure is usually called a 
fatigue failure, but it is better designated as failure by progressive fracture resulting 
from repeated loads. (See Chapter 16.) 

4. Failure by Instability (Buckling) 
Some members may fail by a sudden, catastrophic, lateral deflection (instability or buck- 
ling), rather than by yielding or crushing (Chapter 12). Consider an ideal pin-ended slen- 
der column (or strut) subjected to an axial compressive load P. Elastic buckling of the 
member occurs when the load P reaches a critical value P,, = z2EIJL2, where E is the 
modulus of elasticity, I is the moment of inertia of the cross section, and L is the member 
length. 

PROBLEMS 

1.1. What requirements control the derivation of load-stress 
relations? 
1.2. Describe the method of mechanics of materials. 
1.3. How are stress-strain-temperature relations for a material 
established? 
1.4. Explain the differences between elastic response and 
inelastic response of a solid. 
1.5. What is a stress-strain diagram? 
1.6. Explain the difference between elastic limit and propor- 
tional limit. 
1.7. Explain the difference between the concepts of yield point 
and yield stress. 
1.8. What is offset strain? 
1.9. How does the engineering stress-strain diagram differ from 
the true stress-strain diagram? 
1.10. What are modes of failure? 
1.11. What are failure criteria? How are they related to modes 
of failure? 
1.12. What is meant by the term factor of safety? How are fac- 
tors of safety used in design? 
1.13. What is a design inequality? 

1.14. How is the usual design inequality modified to account 
for statistical variability? 
1.15. What is a load factor? A load effect? A resistance factor? 
1.16. What is a limit-states design? 
1.17. What is meant by the phrase “failure by excessive deflec- 
tion”? 
1.18. What is meant by the phrase “failure by yielding”? 
1.19. What is meant by the phrase “failure by fracture”? 
1.20. Discuss the various ways that a structural member may 
fail. 
1.21. Discuss the failure modes, critical parameters, and failure 
criteria that may apply to the design of a downhill snow ski. 
1.22. For the steels whose stress-strain diagrams are repre- 
sented by Figures 1.8 to 1.10, determine the following proper- 
ties as appropriate: the yield point, the yield strength, the upper 
yield point, the lower yield point, the modulus of resilience, the 
ultimate tensile strength, the strain at fracture, the percent elon- 
gation. 
1.23. Use the mechanics of materials method to derive the 
load-stress and load-displacement relations for a solid circular 
rod of constant radius r and length L subjected to a torsional 
moment T as shown in Figure P1.23. 
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T 

FIGURE P1.23 Solid circular rod in torsion. 

1.24. Use the mechanics of materials method to derive the 
load-stress and load-displacement relations for a bar of con- 
stant width b, linearly varying depth d, and length L subjected 
to an axial tensile force P as shown in Figure P1.24. 

P 

FIGURE P1.24 Tapered bar in tension. 

A Longitudinal section 
(rods not shown) End plate 

Pipe: OD = 100 m m  
ID = 90 m m  

1.25. A pressure vessel consists of two flat plates clamped to 
the ends of a pipe using four rods, each 15 mm in diameter, to 
form a cylinder that is to be subjected to internal pressure p 
(Figure P1.25). The pipe has an outside diameter of 100 mm 
and an inside diameter of 90 mm. Steel is used throughout (E = 
200 GPa). During assembly of the cylinder (before pressuriza- 
tion), the joints between the plates and ends of the pipe are 
sealed with a thin mastic and the rods are each pretensioned to 
65 IcN. Using the mechanics of materials method, determine the 
internal pressure that will cause leaking. Leaking is defined as a 
state of zero bearing pressure between the pipe ends and the 
plates. Also determine the change in stress in the rods. Ignore 
bending in the plates and radial deformation of the pipe. 
1.26. A steel bar and an aluminum bar are joined end to end and 
fixed between two rigid walls as shown in Figure P1.26. The 
cross-sectional area of the steel bar is A, and that of the alumi- 
num bar is A,. Initially, the two bars are stress free. Derive gen- 
eral expressions for the deflection of point A, the stress in the 
steel bar, and the stress in the aluminum bar for the following 
conditions: 
a. A load P is applied at point A. 
b. The left wall is displaced an amount 6 to the right. 
1.27. In South African gold mines, cables are used to lower 
worker cages down mine shafts. Ordinarily, the cables are made 
of steel. To save weight, an engineer decides to use cables made 
of aluminum. A design requirement is that the stress in the cable 
resulting from self-weight must not exceed one-tenth of the ulti- 
mate strength o, of the cable. A steel cable has a mass den- 
sity p = 7.92 Mg/m3 and o, = 1030 MPa. For an aluminum 
cable, p = 2.77 Mg/m3 and o, = 570 MPa. 

-Steel rod (typical) 
Diameter = 15 m m  

Section A-A 

FIGURE P I  .25 Pressurized cylinder. 

Steel Aluminum 

FIGURE P1.26 Bi-metallic rod. 

a. Determine the lengths of two cables, one of steel and the 
other of aluminum, for which the stress resulting from the self- 
weight of each cable equals one-tenth of the ultimate strength 
of the material. Assume that the cross-sectional area A of a 
cable is constant over the length of the cable. 
b. Assuming that A is constant, determine the elongation of 
each cable when the maximum stress in the cable is 0.100,. The 
steel cable has a modulus of elasticity E = 193 GPa and for the 
aluminum cable E = 72 GPa. 
c. The cables are used to lower a cage to a mine depth of 1 km. 
Each cable has a cross section with diameter D = 75 mm. 
Determine the maximum allowable weight of the cage (includ- 
ing workers and equipment), if the stress in a cable is not to 
exceed 0.200,. 
1.28. A steel shaft of circular cross section is subjected to a 
twisting moment T. The controlling factor in the design of the 
shaft is the angle of twist per unit length (y/L; see Eq. 1 S). The 
maximum allowable twist is 0.005 rad/m, and the maximum 
shear stress is z,,, = 30 MPa. Determine the diameter at which 
the maximum allowable twist, and not the maximum shear 
stress, is the controlling factor. For steel, G = 77 GPa. 
1.29. An elastic T-beam is loaded and supported as shown in 
Figure P1.29~. The cross section of the beam is shown in Fig- 
ure P1.296. 
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0 0 
3.1 0.01 
6.2 0.02 
9.3 0.03 
12.4 0.04 
15.5 0.05 
18.6 0.06 
21.7 0.07 
24.7 0.08 
25.8 0.09 
26.1 0.10 
29.2 0.15 
31.0 0.20 
34.0 0.30 

IP 10 kNlm 

36.3 0.40 
38.8 0.50 
41.2 0.60 
44.1 1.25 
48.1 2.50 
50.4 3.75 
51.4 5.00 
52.0 6.25 
52.2 7.50 
52.0 8.75 
50.6 10.00 
45.1 11.25 
43.2 11.66 
- - 

t 
I 

X 

&A 

FIGURE P1.29 T-beam. 

a. Determine the location j of the neutral axis (the horizontal 
centroidal axis) of the cross section. 
b. Draw shear and moment diagrams for the beam. 
c. Determine the maximum tensile stress and the maximum 
compressive stress in the beam and their locations. 
1.30. Determine the maximum and minimum shear stresses in 
the web of the beam of Problem 1.29 and their locations. Assume 
that the distributions of shear stresses in the web, as in rectangu- 
lar cross sections, are directed parallel to the shear force V and 
are uniformly distributed across the thickness (t = 6.5 mm) of the 
web. Hence, Eq. 1.9 can be used to calculate the shear stresses. 
1.31. A steel tensile test specimen has a diameter of 10 mm and 
a gage length of 50 mm. Test data for axial load and corre- 
sponding data for the gage-length elongation are listed in Table 

P1.31. Convert these data to engineering stress-strain data and 
determine the magnitudes of the toughness U, and the ultimate 
strength 0,. 
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Elongation Elongation 
Load (kN) (mm) Load (kN) (mm) 
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